skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hosseini, Leilasadat"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Korley, LaShanda (Ed.)
    The crystallization pathway of long and flexible polymer chains is debatable because of the lack of an initial melt/glass structure. To identify the crystallization pathway, we focus on two binary blends of poly(lactic acid) racemates that form stereocomplex crystals (SCCs). NMR crystallography is used to identify the stereocomplex (SC) structure and SC fraction with or without long-range order. There are significant structural analogies between glass and crystals for both high-molecular-weight (M) and low-M racemates. The observed analogies and kinetics of crystallization indicate that polymer crystallization proceeds via chain segments moving the least possible distance (“freezing in” mechanism) and that topological constraints govern nucleation barriers. 
    more » « less
    Free, publicly-accessible full text available October 21, 2026
  2. Chain entanglements play a crucial role in polymer crystallization, yet their effects on crystallization remain not fully understood. Freeze-drying is one way to potentially preserve disentangled states of long polymer chains. In fact, it is known that freeze-drying (FD) significantly accelerates the crystallization kinetics of semicrystalline polymers. However, the chain-level structure of the FD polymer chains without a long-range order (glass) has been a debatable matter. In this study, we investigate the effect of freeze-drying on single chain-level structures of 13CH3 enriched poly(L-lactic Acid) and 13CH enriched poly(D-lactic acid) racemate by using 1H-1H spin diffusion via 13C detection solid-state NMR spectroscopy. Spatial distributions of PLLA and PDLA glassy chains in the range of a few Å – 30 nm are evaluated via 1H-1H spin diffusion. This analysis provides core-shell morphology of single chains where the outer shell layers include both PDLA and PLLA mixture and the inner core possess a single component. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026